

Dr. K. Balamurugan Professor

Contact	
Address	: Department of Biotechnology
	Alagappa University
	Karaikudi – 630 003
	Tamil Nadu, INDIA
Employee Number	: 54102
Contact Phone (Office)	: +91 4565 225215; 223322 (lab)
Contact Phone (Mobile)	: +91 9486426931
Contact e-mail(s)	: bsuryar@yahoo.com; balamurugank@alagappauniversity.ac.in
Skype id	: bsuryar43

Academic Qualifications:

M. Sc., Ph. D.

Teaching Experience:

18 Years

Research Experience:

24 Years

Additional Responsibilities

- Member of the Institutional Animal Ethical Committee (IAEC)
- Coordinator: Incubation and Technology Transfer center (Govt. of TN Scheme) (01-05-2015 to 19 August 2019)
- Chief Superintendent –PG Examinations- November 2018 and April 2019 @ Science Campus, Alagappa University
- Special Officer for Recruitment Cell of Alagappa University [24 October 2018 to 11 February 2020]
- Expert Member of the Inspection Commission for Affiliation of B.Sc., Biotechnology
- Expert Member of the Inspection Commission for Affiliation of M.Sc., Biotechnology

- Co-Coordinator: Bioinformatics Infrastructure Facility (funded by DBT, Govt. of India)
- Deputy Coordinator: UGC-SAP (DRS-I) Department of Biotechnology.

Areas of Research

- Host pathogen-interactions using *C. elegans* as model organism
- Understanding innate immune regulations through functional genomics, proteomics and metabolomics

Research Supervision / Guidance

Program of Study		Completed	Ongoing
Research	PDF	-	01
	Ph.D.	13	08
	M.Phil.	-	-
Project	PG	52	07
	UG / Others	12	-

Publications

International		National		Others
Journals	Conferences	Journals	Conferences	Books / Chapters / Monographs / Manuals
98	115	04	50	13
Cumulativ	/e Impact Factor (as per JCR) :	311.05 (Avg. I.F.	3.04)

cumulative implet i actor (as per jen)	•	511.05 (mg. m. 5.01)
h-index	:	23
i10 index	:	52
Total Citations	:	1519

Funded Research Projects

Completed Projects

	_	Period			Budget
S. No	Agency	From	То	Project Title	(Rs. In lakhs)
1.	DBT	Dec- 2007	Dec- 2010	RNA-interference mediated silencing of antimicrobial genes of <i>Caenorhabditis elegans.</i>	24.73
2.	UGC	Apr-	Mar-	Screening of marine bioresources for	11.76

		2008	2011	antibacterial compounds	
3.	ICMR	Mar- 2011	Mar- 2014	Analysis of antimicrobial gene expression pattern	25.23
4.	DBT	Mar- 2011	Mar- 2014	Studies on Immune regulatory proteins	26.546
5.	CSIR	Apr- 2011	Mar- 2014	<i>Caenorhabditis elegans</i> response to human pathogens	21.92
6.	DST	July- 2011	July- 2014	Characterization of innate immune regulators during <i>Shigella spp.</i>	23.30
7.	DST	Feb- 2012	Jan- 2015	<i>Caenorhabditis elegans</i> response against <i>Vibrio spp.</i> infection	20.03
8.	ITC-AU Collabora tive project	July- 2011	Dec- 2014	Anti-aging: Role of target genes	19.14
9.	UGC Major Research Project	01 April 2013	31 March 2017	Physiological and molecular changes in <i>Caenorhabditis elegans</i> during subsequent bacterial infections	10.85
10.	ITC-AU Collabora tive Project	Jul- 2016	Dec- 2019	<i>C. elegans</i> : An <i>in vivo</i> model for dermal inflammation studies	41.17

On-going Projects

S.		Per	iod		Budget
No	Agency	From	То	Project Title	(Rs. In lakhs)
1	DBT	June 2017	June 2020	Impact of <i>Cronobacter sakazakii</i> infection on the neuroimmunity	70.24

Pate	nts				
S. No	Title	Inventors	Patent Number	Filing Date	Publication date
1	Personal Care Compositions for Anti- Aging	Prasanth MI, Balamurugan K , Pandian SK, Gayathri S, James PB	676/KOL/201 5	18 June 2015	20/10/17
2	Personal Care Compositions for Anti- Aging	Prasanth MI, Balamurugan K , Pandian SK, Gayathri S, James PB	679/KOL/201 5	18 June 2015	20/10/17

3	Composition	Prasanth MI,	677/KOL/201	18 June	20/10/17
З	Composition Comprising Green Tea	Balamurugan K,	5	18 June 2015	20/10/17
	and Naringenin for		5	2015	
	0	Pandian SK, Gayathri S, James PB			
4	Anti-Aging Personal Care	· ·	600/VOL /201	10 Juno	20/10/17
4		Prasanth MI,	680/KOL/201	18 June 2015	20/10/17
	Compositions for Anti-	Balamurugan K,	5	2015	
	Aging	Pandian SK, Gayathri S, James PB			
5	Personal Care	Prasanth MI, Pandian	766/KOL/201	15 July	13/10/17
5	Compositions for Anti-	SK, Gayathri S, James	5	15 July 2015	13/10/17
	Aging	PB, Balamurugan K	5	2015	
6	Personal Care	Prasanth MI, Pandian	779/KOL/201	17 July	13/10/17
0	Compositions for Anti-	SK, Gayathri S, James	5	17 July 2015	13/10/17
	-	-	5	2015	
7	Aging An anti-acne	PB, Balamurugan K Sivasankar C, Pandian	Application	22 March	
/		SK and Balamurugan K	No.	22 March 2016	
	synergistic composition and	on and Daiamui ugall N	20164101005	2010	
	process thereof		20104101005		
8	An antibacterial	Swetha TK, Pandian SK,	Application	07 March	
0	composition and	Sivasankar C,	No.	2018	
	implementations	Balamurugan K,	20183100848	2010	
	thereof	Veera Ravi A, Bhaskar	0		
	thereof	JP, Venkateswaran K,	0		
		Deepa M, Das SS			
9	A composition	Swetha TK, Pandian SK,	Application	07 March	
	comprising	Sivasankar C,	No.	2018	
	phytochemicals and	Balamurugan K,	20183100848	2010	
	applications thereof	Veera Ravi A, Bhaskar	1		
	applications thereof	JP, Venkateswaran K,	-		
		Deepa M, Das SS			
10	A composition	Swetha TK, Pandian SK,	Application	07 March	
	comprising	Sivasankar C,	No.	2018	
	phytochemicals and	Balamurugan K,	20183100848		
	applications thereof	Veera Ravi A, Bhaskar	2		
	11	JP, Venkateswaran K,			
		Deepa M, Das SS			
11	Antibacterial	Swetha TK, Pandian SK,	Application	07 March	
	composition and uses	Sivasankar C,	No.	2018	
	thereof	Balamurugan K,	20183100848		
		Veera Ravi A, Bhaskar	3		
			5		
		JP, Venkateswaran K,			
		Deepa M, Das SS			

Distinctive Achievements / Awards

- 1. 2008-DBT-RGYI Young Scientist award project for Young Investigator under 40 Years.
- 2. 2011- DST Young Scientist Award project.
- 3. 2011-DST International Travel award for attending FEMS 2011 Conference held at Geneva, Switzerland during June 26-30, 2011.

- 4. Best Poster Award "AMI-Panjab University" for the poster presentation entitled "Modification of pathogen lipopolysaccharide during the interaction with Caenorhabditis elegans" presented by Vignesh Kumar B and Balamurugan, K, at 52nd Annual Conference of Association of Microbiologists of India (AMI), "International Conference on Microbial Biotechnology for Sustainable Development" during Nov 3-6, 2011 held at Panjab University, Chandigarh, India.
- 5. Invited ORAL presentation at the 10th Asia Pacific Bioinformatics Conference conducted by LA Trobe University, Melbourne, Australia, 17-19 Jan 2012.
- 6. Second Best Oral Presentation Award at the 5th International Conference on Natural Products for Health and Beauty (NATPRO 5) in Phuket, Thailand, 05-07 May 2014.
- 7. **Best Faculty Award- Biotechnology 2013- Senior** by Shri PK Das Memorial, Nehru Group of Institutions, Coimbatore.
- 8. **Dr. R. R. Mani Maran Memorial Lecture Award** on 26 November 2014 by Indian Society for Comparative Endocrinology for the scientific contribution in the field of Host-Pathogen interactions related to Reproduction.
- 9. Adjunct Faculty, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, since 06 Dec 2016
- 10. Visiting Professor, Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Japan, March 12, 2018- March 28, 2018.

Events organized in leading roles

Number of Seminars / Conferences / Workshops / Events organized: 09

Organized an International Conference cum workshop on "*Caenorhabditis elegans* based OMICS for Future Challenges" during 09-13 September 2019

Events Participated (optional)

Conferences / Seminars / Workshops: 178

Overseas Exposure / Visits

- 1. Japan
- 2. Malaysia
- 3. Israel
- 4. Portugal
- 5. Thailand
- 6. Germany
- 7. London, United Kingdom
- 8. Australia
- 9. Switzerland
- 10. USA
- 11. Taiwan

Membership in

Professional Bodies

LIFE MEMBER: Association of Microbiologists of India LIFE MEMBER: Society of Biological Chemists, India (SBC) LIFE MEMBER: The Biotech Research Society, India (BRSI) LIFE MEMBER: Indian Society for Comparative Endocrinology (ISCE) LIFE MEMBER: Proteomics Society, India (PSI)

- The Indian Science Congress Association
- American Gastroenterological Association
- European Congress of Clinical Microbiology and Infectious Diseases
- American Society for Microbiology

Editorial Board

- Gene Reports
- Journal of Proteins and Proteomics
- CRC Press: Taylor and Francis

Advisory Board

- UGC-SAP (DRS-1) Advisory Committee member- Department of Biosciences, Mangalore University (2016-)
- Member of the Academic Council of Karpagam Academy of Higher Education (2018-19 & 2019-20)
- Senate member- NIPER-Kolkata (since 06 September 2019-)

Academic Bodies (such as Board of Studies etc.,)

MEMBER IN BOARD OF STUDIES

- M.Sc. Biotechnology, Alagappa University (2007 onwards)
- Biotechnology, Manonmaniam Sundaranar University, Tirunelveli (2008-2010)
- Biochemistry, Dr. G.R. Damodaran College of Science (2010-2012)
- B.Sc. (Chairman) Biotechnology, Alagappa University (2008-2011)&(2015-2017)
- B.Sc. Biotechnology, Alagappa University (2011-2014)
- B.Sc. Biochemistry, Alagappa University (2011-2014)
- B.Sc. Advanced Zoology & Animal Biotechnology (2015-2017)

Resource persons in various capacities

Number of Invited / Special Lectures delivered: 94

Others

- 1. Articles published in Newspapers / Magazines : 13 Book chapters
- 2. Products developed : 07
- 3. No. of PhD Thesis evaluated : 21
- 4. No. of PhD Public Viva Voce Examination conducted : 17
- 5. Sequences submitted in GenBank: 103

Recent Publications (selective)

1.	Balasubramaniam, B., Gowripriya T., and Balamurugan K (2020). Identification of differentially
1.	regulated proteins of <i>Caenorhabditis elegans</i> during <i>Salmonella enterica</i> Serovar Typhi exposure
	using Mass Spectrometry. Journal of Proteins and Proteomics. [Publisher: Springer Nature,
	Switzerland] DOI: 10.1007/s42485-020-00033-y. [Accepted].
2.	Dilawar AM and Balamurugan K (2020). Modulation of the host cell mitochondrial proteome by
2.	PemKSa toxin protein exposure. Microbial Pathogenesis 140: p103963 [Publisher: Elsevier; Country
	UK; Impact Factor- 2.581].
3.	Prasanth MI, Gayathri S, Bhaskar JP, Krishnan V, Balamurugan K (2020). Understanding the role of
51	p38 and JNK mediated MAPK pathway in response to UV-A induced photoaging in <i>Caenorhabditis</i>
	elegans. J Photochem Photobiol B. DOI: 10.1016/j.jphotobiol.2020.111844 [In Press] (Impact
	Factor: 4.067).
4.	Balasubramaniam, B., VenkataKrishna, L.M., Vinitha, T., JebaMercy, G., and Balamurugan, K
	(2020). Salmonella enterica Serovar Typhi exposure elicits deliberate physiological alterations and
	triggers the involvement of ubiquitin mediated proteolysis pathway in Caenorhabditis elegans.
	International Journal of Biological Macromolecules Vol. 149, Jan 24; 2020;149:215-233. (Impact
	Factor: 4.784). DOI: 10.1016/j.ijbiomac. 2020.01.225 [Publisher: Elsevier BV] [IF: 4.784].
5.	Prasanth MI, Gayathri S, Bhaskar JP, Krishnan V and Balamurugan K (2020). Analyzing the
	individual and synergistic effects of antioxidants in combating aging and photoaging using model
	nematode, Caenorhabditis elegans. Photochemistry and Photobiology 96 (1): 139-147 [DOI:
	10.1111/php.13167]; [Publisher: Wiley-Blackwell, Inc.] [IF: 2.338].
6.	Dilawar AM and Balamurugan K (2019). In vitro and in vivo efficacy of Caenorhabditis elegans
	recombinant antimicrobial peptide against Gram-negative bacteria. Biofouling. Sep;35(8):900-921.
	doi: 10.1080/08927014.2019.1675048. [Publisher: Taylor & Francis, UK]; (Impact Factor: 2.847).
7.	Rai P, Sharika R, Ganguli A, Balamurugan K , Sarala B, Sharma R, Gupta R, Neogi SB (2019).
	Indigenous preparations of Bryonia laciniosa, Quercus infectoria, Putranjiva roxburghii and Mesua ferrea induces developmental toxicity in <i>C. elegans</i> . Proceedings of the National Academy of
	Sciences, India Section B: Biological Sciences [DOI: 10.1007/s40011-019-01138-1] [Publisher:
	Springer India; IF. 0.396].
8.	Pooranachithra M, Bhaskar JP, Murali D, Das SS, JebaMercy G, Krishnan V, Balamurugan K . (2019).
01	Unravelling the wound healing ability and mode of action of pyridine carboxamide oxime using
	Caenorhabditis elegans as potential prescreen wound model. Life Sciences 235:116859; [DOI:
	10.1016/j.lfs.2019.116859]; [Publisher: Elsevier BV] [I.F. 3.448].
9.	Balasubramaniam B, Vinitha T, Deepika S, JebaMercy G, VenkataKrishna LM and Balamurugan K
	(2019). Analysis of Caenorhabditis elegans phosphoproteome reveals the involvement of a
	molecular chaperone, HSP-90 protein during Salmonella enterica Serovar Typhi infection.
	International Journal of Biological Macromolecules 137:620-646.
	https://doi.org/10.1016/j.ijbiomac.2019.06.085; [Publisher: Elsevier BV] [IF: 4.784].
10.	Dilawar AM and Balamurugan K (2019). A Proteomic analysis of Caenorhabditis elegans
	mitochondria during bacterial infection. Mitochondrion. pii: S1567-7249(18)30138-7; DOI:
	10.1016/j.mito.2019.03.002;. [Publisher: Elsevier BV; Impact Factor: 3.449].
11.	Dilawar AM and Balamurugan K. (2019). Global proteomic response of Caenorhabditis elegans
	against PemKSa toxin. Frontiers in Cellular and Infection Microbiology, section Bacteria and Host:
	9:172; DOI: 10.3389/fcimb.2019.00172 [IF. 3.518].
10	Kalaivarasan (,)/aaranandian M. Joha Maray (, Balamurusan K . Jasarta J. (2010). Amurdalia
12.	Kalaiyarasan G, Veerapandian M, JebaMercy G, Balamurugan K , Joseph J (2019). Amygdalin- Functionalized Carbon Quantum Dots for Probing β Glucosidase Activity for Cancer Diagnosis and
	Therapeutics. ACS Biomaterials Science & Engineering 2019 [DOI:
	10.1021/acsbiomaterials.9b00394]; [I.F. 4.432]
L	

13.	Pandey G, Marimuthu M, Kanagavalli P, Ravichandiran V, Balamurugan K, Veerapandian M (2019).
	Chitosanylated MoO3-Ruthenium(II) Nanocomposite as Biocompatible Probe for Bioimaging and
	Herbaceutical Detection. ACS Biomaterials Science & Engineering. (DOI:
	10.1021/acsbiomaterials.9b00575) [I.F. 4.432]
14.	Prasanth MI, Venkatesh D, Murali D, Bhaskar JP, Krishnan V and Balamurugan K (2019).
	Understanding the role of DAF-16 mediated pathway in <i>Caenorhabditis elegans</i> during UV-A
	mediated photoaging process. <i>Archives of Gerontology and Geriatrics</i> [Publisher: ELSEVIER BV, Country: Netherlands; Impact Factor: 2.241].
15.	Mohana M, PraveenKumar B, Mariya Salomi L, Murugan V and Balamurugan K (2018). Methylene
15.	Blue-Fortified Molybdenum Trioxide Nanoparticles: Harnessing Radical Scavenging Property. ACS
	Applied Materials & Interfaces, Dec 19;10(50):43429-43438. doi: 10.1021/acsami.8b15841.
	[Publisher: American Chemical Society (United States); Impact Factor: 8.097].
16.	Sharika R, Subbiah P and Balamurugan K . (2018). Studies on reproductive stress
10.	caused by candidate Gram positive and Gram negative bacteria using model
	organism, Caenorhabditis elegans. Gene 649:113-126; <u>https://doi.org/10.1016</u>
	/j.gene.2018.01.088; [Country: UK; Elsevier Ltd; Impact Factor: 2.415]
17.	Kavitha S, Pooranachithra M, Balamurugan K and Goel G (2018) Probiotic mediated
17.	colonization resistance against <i>E.coli</i> infection in experimentally challenged <i>C.</i>
	elegans. Microbial Pathogenesis. [Elsevier] [IF: 2.332] (In Press).
18.	Kamaladevi A, Marudhupandiyan S and Balamurugan K (2017). Model system based
	proteomics to understand the host response during bacterial infections. Molecular
	BioSystems 13: 2489-2497. DOI: 10.1039/C7MB00372B; [Country: UK; Royal
	Society of Chemistry] (Impact Factor: 2.781).
19.	Vigneshwari L and Balamurugan, K. Involvement of O-GlcNAcylation in
	<i>Caenorhabditis elegans</i> during pathogenic infection. FEBS Journal. Volume 75: Page
	75. [ISSN: 1742-464X]; [Wiley; UK] (Impact Factor: 4.237);
20.	Kamaladevi A and Balamurugan K (2017). Global proteomics revealed Klebsiella
	pneumoniae induced autophagy and oxidative stress in Caenorhabditis elegans by
	inhibiting PI3K/AKT/mTOR pathway during infection. Frontiers in Cellular and
	Infection Microbiology 7:393; DOI: 10.3389/fcimb.2017.00393 [Country:
	Switzerland; Frontiers Media S. A.] (Impact Factor: 4.3).
21.	Marudhupandiyan S, Prithika U, Balasubramaniam B and Balamurugan K (2017). RACK-
	1, a multifaceted regulator is required for C. elegans innate immunity against S. flexneri
	M9OT infection. Developmental and Comparative Immunology. Vol. 74; September
	2017, Pages 227-236. DOI:10.1016/j.dci.2017.05.008 [Country: UK; Elsevier] (Impact
- 22	Factor: 3.62).
22.	Dhanashree, Sharika R, Balamurugan K and Rajagopal K (2017). Bifid shape is intrinsic to <i>Bifidobacterium adolescentis</i> . Front. Microbiol. 8:478. doi: 10.3389/ fmicb.2017.00478.
	(Impact Factor: 4.165).
23.	Prithika U, Vikneswari R and Balamurugan K (2016). Short term memory of
23.	<i>Caenorhabditis elegans</i> against bacterial pathogens involves CREB transcription
	factor. Immunobiology. DOI: 10.1016/j.imbio.2016.12.008 [Country: Netherlands;
	Publisher: Elsevier BV] (Impact Factor: 2.99).
24.	Marudhupandiyan S and Balamurugan K (2016). Intrinsic JNK-MAPK pathway
	involvement requires daf-16 mediated immune response during Shigella flexneri
	infection in <i>C. elegans</i> ". Immunologic Research DOI: 10.1007/s12026-016-8879-6.
	[Country: USA; Springer] (Impact Factor: 2.934).
25.	Kamaladevi A and Balamurugan K (2016). <i>Lactobacillus casei</i> triggers TLR mediated
	RACK-1 dependent p38 MAPK pathway in Caenorhabditis elegans to resist Klebsiella

	pneumoniae infection. Food & Function 7: 3211- 3223. DOI: 10.1039/C6F000510A
	[Country: UK; Royal Society of Chemistry] (Impact Factor: 2.791).
26.	
	stimulates the immune response and longevity of C. elegans towards pathogen
	exposure. Innate Immunity 22(6): 466-478. DOI: 10.1177/1753425916654557
	[Country: UK; SAGE Publishing] (Impact Factor: 3.271)
27.	Vigneshkumar B, Durai S, Kundu S and Balamurugan K (2016). Proteome Analysis
	Reveals Translational Inhibition of <i>Caenorhabditis elegans</i> enhances susceptibility to
	Pseudomonas aeruginosa PAO1 pathogenesis. Journal of Proteomics 145: Pages 141-
	152. DOI: 10.1016/j.jprot.2016.03.047 [Elsevier, Country: UK] (Impact Factor:
	3.888)
28.	JebaMercy G, Durai S, Prithika U, Marudhupandiyan S, Dasauni P, Kundu S and
	Balamurugan K (2016). Role of DAF-21 in <i>Caenorhabditis elegans</i> immunity against
	Proteus mirabilis infection. Journal of Proteomics 145: Pages 81-90.
- 20	DOI:10.1016/j.jprot.2016.03.047 [Elsevier, Country: UK] (Impact Factor: 3.888)
29.	Kamaladevi A and Balamurugan K (2016). Lipopolysaccharide of <i>Klebsiella</i>
	pneumoniae attenuates immunity of <i>Caenorhabditis elegans</i> and evades by altering
	its supramolecular structure. <i>RSC Advances</i> 6:30070-30080. DOI: 10.1020/CEPA18206A [Country IIV: Pour] Society of Chemistry] (Impact Factor
	10.1039/C5RA18206A. [Country: UK; Royal Society of Chemistry] (Impact Factor 3.84)
30.	Prasanth MI, Santoshram GS, Bhaskar JP and Balamurugan K (2016). Ultraviolet-A
50.	triggers photoaging in model nematode <i>Caenorhabditis elegans</i> in a DAF- 16
	dependent pathway. <i>AGE</i> (Dordr) 38(27): 1-13; DOI: 10.1007/s11357-016-9889-y
	(Country: American Aging Association, Dordrecht, The Netherlands; Publisher:
	Springer; Impact Factor: 3.445)
31.	Kamaladevi A, Ganguli A and Balamurugan K (2016). <i>Lactobacillus casei</i> stimulates
	phase-II detoxification system and rescues malathion induced physiological
	impairments in <i>Caenorhabditis elegans</i> . Comparative Biochemistry and Physiology-
	Part C: Toxicology & Pharmacology 179: 19-28. DOI: 10.1016/j.cbpc.2015.08.004
	(Country: New York, USA; Publisher: Elsevier Science; Impact Factor: 2.301).
32.	Sivamaruthi BS, Madhumita R, Balamurugan K and Rajan KE (2015). Cronobacter
	sakazakii infection alters serotonin transporter and improved fear memory
	retention in the rats. Frontiers in Pharmacology, section Neuropharmacology 6:188.
	doi: 10.3389/fphar.2015.00188 (Country: Switzerland; Publisher: Lausanne:
- 22	Frontiers Media; Impact factor: 3.8).
33.	Kamaladevi A and Balamurugan K (2015). Role of PMK-1/p38 MAPK defense in
	<i>Caenorhabditis elegans</i> against <i>Klebesiella pneumoniae</i> infection and changes in
	supra-molecular aggregate structure of LPS during host-pathogen interaction. <i>Pathogens and Disease</i> 73 (5) (Formerly FEMS Immunology & Medical Microbiology.
	Published on behalf of the Federation of European Microbiological Societies) DOI:
	10.1093/femspd/ftv021 (Country: UK; Oxford University Press. Impact Factor:
	2.554)
34.	Sivamaruthi B, Prasanth MI and Balamurugan K (2015). Alterations in <i>Caenorhabditis</i>
	elegans and Cronobacter sakazakii lipopolysaccharide during interaction. Archives of
	Microbiology 197:327-337 DOI:10.1007/s00203-014-1064-1 (Country: USA;
	Springer-Verlag; Impact Factor: 1.8)
35.	Kesika P, Prasanth MI and Balamurugan K (2015). Modulation of Caenorhabditis
	elegans immune response and modification of Shigella endotoxin upon interaction.

	Journal of Basic Microbiology. doi: 10.1002/jobm.201400511 [Impact factor: 1.822].
36.	JebaMercy G, Prithika U, Lavanya N, Sekar C and Balamurugan K (2015). Changes in
	host, Caenorhabditis elegans and Staphylococcal Lipoteichoic acid during their
	interactions. Gene 558 (1): 159-172. DOI: 10.1016/j.gene.2014.12.056 [Country: UK;
	Elsevier Ltd; Impact Factor: 2.341].
37.	Durai S, Nirpendra S, Suman K and Balamurugan K (2014). Proteomic investigation of
	Vibrio alginolyticus challenged Caenorhabditis elegans revealed regulation of cellular
	homeostasis proteins and their role in supporting innate immune system.
	Proteomics 14(15):1820-32. DOI 10:1002/pmic.201300374. [Country: Germany;
	WILEY-VCH Verlag GmbH & Co. KGaA, Germany; Impact Factor: 4.150].
38.	Vigneshkumar B, Radhakrishnan S and Balamurugan K (2014). Analysis of Gram
	negative pathogen Lipid A changes during the interaction with model organism,
	Caenorhabditis elegans. Lipids. 49(6):555-75. DOI:10.1007/s11745-014-3898-3
	[Country: Germany; Springer Berlin Heidelberg; Impact Factor: 2.129].
39.	Durai S, Vigneshwari L and Balamurugan K (2013). Caenorhabditis elegans based in
	vivo screening of bioactives from marine sponge associated bacteria against Vibrio
	alginolyticus. Journal of Applied Microbiology Dec;115(6):1329-42. DOI:
	10.1111/jam.12335y [Wiley] [Impact Factor: 2.337].
40.	Sivamaruthi B and Balamurugan K (2013) Physiological and immunological
	regulations in Caenorhabditis elegans infected with Salmonella enterica serovar
	Typhi. Indian Journal of Microbiology 54 (1): 52-58. DOI:10.1007/s12088-013-
	0424-x [Springer] [Impact Factor: 0.511].
41.	Jebamercy G, Vigneshwari L and Balamurugan K (2013). A MAP Kinase pathway in
	<i>Caenorhabditis elegans</i> is required for defense against infection by opportunistic <i>Proteus</i>
	<i>species. Microbes and Infection</i> 15(8-9): 550-568. DOI:10.1016/j.micinf.2013.03.009
42.	[ELSEVIER] (Impact Factor: 3.101). Kamaladevi A, Ganguli A, Kumar M and Balamurugan K (2013). <i>Lactobacillus casei</i> protects
42.	malathion induced oxidative stress and macromolecular changes in <i>Caenorhabditis elegans</i> .
	Pesticide Biochemistry and Physiology 105: pp. 213-223. DOI:
	10.1016/j.pestbp.2013.02.005 [ELSEVIER] (Impact Factor: 2.009).
43.	VigneshKumar B, Durai S, Nirpendra Singh, Suman K and Balamurugan K. (2013).
	Understanding host-pathogen interaction by proteomic studies involving <i>C. elegans</i> and <i>P.</i>
	aeruginosa. Protein Science, 2013 August: Vol 22, Special Issue- Issue Supplement S1, Pages
	1-258 (Impact factor: 2.735).
44.	Vigneshkumar B, Pandian SK and Balamurugan K (2013). Catalase Activity and Innate Immune Response to the Heavy Metal Toxin Lead by the <i>Caenorhabditis elegans</i>
	Environmental Toxicology 28(6):313-321. Doi:10.1002/tox.20722. [Country: USA; Impact
	Factor: 1.831].
45.	Jebamercy G and Balamurugan K (2012). Effects of subsequent infections in
	Caenorhabditis elegans with Staphylococcus aureus and Proteus mirabilis.
	Microbiology and Immunology 56(12):825-35. doi: 10.1111/j.1348-
	0421.2012.00509.x. [Wiley-Blackwell, Japan, Impact Factor: 1.304].
46.	Durai S and Balamurugan K (2012). Rescue of model organism, <i>Caenorhabditis elegans</i>
	by Lagerstroemia speciosa flower extract against clinical and drug resistant
	<i>Staphylococcus aureus</i> infection. International Journal of Infectious Diseases
	2012;16S1:e317-e473; No. 54.009. [Country: USA; Impact Factor: 2.529].
47.	JebaMercy, G and Balamurugan, K. Response of <i>Caenorhabditis elegans</i> during
	subsequent infections with Gram positive and negative bacteria. BMC Infectious
	Diseases 2012; 12:P44 (Impact Factor: 3.118).
L	

48.	Balamurugan K and Kesika P (2012). Role of immune pathways in <i>Caenorhabditis elegans</i> during <i>Serratia marcescens</i> infection. Clinical Microbiology and Infection 18(s3):1-902.
49.	Balamurugan K and Sivamauthi B (2012). Changes in immune pathway and proteins of <i>Caenorhabditis elegans</i> during <i>Cronobacter sakazakii</i> infection. The FASEB Journal 26: 1156.2 [Country: USA; Impact Factor: 6.79].
50.	Balamurugan K and JebaMercy G (2012). Role and contribution of conserved p38MAP kinase pathway in <i>Caenorhabditis elegans</i> immunity during <i>Proteus vulgaris</i> infection. The FASEB Journal 26: 835.2 [Country: USA; Impact Factor:6.79].
51.	Kesika P and Balamurugan K (2012). Studies on Shigella boydii infection in Caenorhabditis elegans and bioinformatics analysis of immune regulatory protein interactions. BBA: Proteins and Proteomics 1824 (12): 1449–1456 [http://dx.doi.org/ 10.1016 /j.bbapap. 2012.07.008]. [Country: Germany; Impact Factor: 3.635]
52.	Vigneshkumar B, Pandian SK and Balamurugan K (2012). Regulation of <i>Caenorhabditis</i> <i>elegans</i> and <i>Pseudomonas aeruginosa</i> machinery during interactions. Archives of Microbiology 2012 Apr; 194(4):229-42 [Country: Germany; Impact Factor: 1.927].
53.	Jebamercy G, Pandian SK and Balamurugan K (2011). Changes in <i>Caenorhabditis elegans</i> life-span and selective innate immune genes during <i>Staphylococcus aureus</i> infection. Folia Microbiologica 56: 373-380 (Springer Publishers; Country: Netherlands; Impact Factor: 0.978).
54.	Durai S, Pandian SK and Balamurugan K (2011). Changes in <i>Caenorhabditis elegans</i> exposed to <i>Vibrio parahaemolyticus</i> . Journal of Microbiology and Biotechnology 21(10): 1026–1035 [Country: South Korea; Impact Factor: 1.381].
55.	Sivamaruthi B, Ganguli A, Kumar M, Bhaviya S, Pandian SK and Balamurugan K (2011). <i>Caenorhabditis elegans</i> as a model for studying <i>Cronobacter sakazakii</i> ATCC BAA-894 pathogenesis. Journal of Basic Microbiology 51, 540–549 DOI 10.1002/jobm.201000377. [Country: UK; Impact Factor: 1.822]
56.	Kesika P, Pandian SK and Balamurugan K (2011). Analysis of <i>Shigella flexneri</i> mediated infections in model organism, <i>Caenorhabditis elegans</i> . Scandinavian Journal of Infectious Diseases 43(4):286-95 DOI:10.3109/00365548. 2010.548400 [Country: UK; Impact Factor: 1.70].
57.	Durai S, Pandian SK and Balamurugan K (2011). Establishment of a <i>Caenorhabditis elegans</i> infection model for <i>Vibrio alginolyticus</i> . Journal of Basic Microbiology 51(3):243-52. DOI 10.1002/jobm.201000303 [Country: UK; Impact Factor: 1.822] .

Faculty Profile as of 31 May 2020