

Editor-in-Chief Dr. N.Anbazhagan Professor & Head, DM

Associate Editor Mrs. B. Sundara Vadivoo Assistant Professor, DM

Editors

Dr. J. Vimala Assistant Professor, DM Dr. R. Raja Assistant Professor, RCHM Dr. S. Amutha Assistant Professor, RCHM Dr. R. Jeyabalan Assistant Professor, DM Dr. M. Mullai Assistant Professor, DDE

Technical & Editorial

Assistance R.Suganya VS.Anushya Ilamathy D.Gandhi Mathi J.Arockia Reeta K.Surya prabha L.Vijayalakshmi K. Sowmiya S. Kudiyarasi

Volume 1, Issue 3

News Letter

Since 04/07/2016

We are delighted to bring to you this issue of ALU Mathematics News, a monthly newsletter dedicated to the emerging field of Mathematics. This is the first visible —output from the Department of Mathematics, Alagappa University. We are committed to make

ALU Mathematics News a continuing and effective vehicle to promote communication, education and networking, as well as stimulate sharing of research, innovations and technological developments in the field. However, we would appreciate your feedback regarding how we could improve this publication and enhance its value to the community. We are keen that this publication eventually grows beyond being a mere —news letter to become an invaluable information resource

Dr. N. Anbazhagan

for the entire Mathematics community, and look forward to your inputs to assist us in this endeavor.

<u>MATHEMATICS</u>

Mathematics may be defined as "the study of relationships among quantities, magnitudes, and properties may be deduced" or " the study of quantity , structure, space and change".

Historically, it was regarded as the science of quantity, whether of magnitudes(as in geometry) or of numbers (as in arithmetic) or of the generalization of these two fields (as in algebra). Some have seen it in terms as simple as a search for patterns.

During the 19th Century, however, mathematics broadened to encompass mathematical or symbolic logic, and thus came to be regarded increasingly as the science of relations or of drawing necessary conclusions (although some see even this as too restrictive).

The discipline of mathematics now covers-in addition to the more or less standard fields of number theory, algebra, geometry, analysis(calculus), mathematical logic and set theory , and more applied mathematics such as probability theory and statistics- a bewildering array of specialized areas and fields of study , including group theory, order theory, knot theory, sheaf theory, topology, differential geometry, fractal geometry, graph theory, functional analysis, complex analysis, singularity theory, catastrophe theory, chaos theory, measure theory, model theory, category theory, control theory, game theory, complexity theory and many more.

Some Mathematicians list and their achievement

Date	Name	Major Achievements			unit fractions, etc)
35000 BCE 3100		First notched tally bones	1200 BCE		First decimal numeration system with place value concept
BCE 2700		counting and measuring system Earliest fully-developed	1200- 900 BCE		Early Vedic mantras invoke powers of ten from a hundred all the
BCE		base 10 number system in use	800-		way up to a trillion "Sulba Sutra" lists
2600 BCE		Multiplication tables, geometrical exercises and division problems Earliest papyri showing numeration system and basic arithmetic	400 BCE		several Pythagorean triples and simplified Pythagorean theorem
2000- 1800 BCE					and a rectangle, quite accurate approximation to $\sqrt{2}$
1800- 1600 BCE		Clay tablets dealing with fractions, algebra and equations	650 BCE		Lo Shu order three (3 x 3) "magic square" in which each row, column
1650 DCE		Rhind Papyrus			and diagonal sums to 15
RCF		arithmetic, geometry,	624-	Thales	Early developments in

546		geometry, including			deductive reasoning
BCE		work on similar and right triangles	300 BCE	<u>Euclid</u>	Definitive statement of classical (Euclidean)
570- 495 BCE	<u>Pythagoras</u>	Expansion of geometry, rigorous approach building from first principles, square and triangular numbers, Pythagoras' theorem			geometry, use of axioms and postulates, many formulas, proofs and theorems including Euclid's Theorem on infinitude of primes
500 BCE 490-	Hippasus Zeno of Elea	Discovered potential existence of irrational numbers while trying to calculate the value of $\sqrt{2}$ Describes a series of paradoxes concerning	287- 212 BCE	<u>Archimedes</u>	Formulas for areas of regular shapes, "method of exhaustion" for approximating areas and value of π , comparison of infinities
BCE 470-	Hippocrates	infinity and infinitesimals	276- 195 BCE	Eratosthenes	"Sieve of Eratosthenes" method for identifying prime numbers
410 BCE	of Chios	compilation of geometrical knowledge, Lune of Hippocrates	262- 190 BCE	Apollonius of Perga	Work on geometry, especially on cones and conic sections (ellipse, parabola, hyperbola)
400- 370 BCE	Democritus	geometry and fractions, volume of a cone	200 BCE		"Nine Chapters on the Mathematical Art",
428- 348 BCE	 Plato Platonic solids, statement of the Three Classical Problems, influential teacher and popularizer of mathematics, insistence on rigorous proof and logical methods Eudoxus of Cnidus Method for rigorously proving statements about areas and volumes by successive approximations Aristotle Development and standardization of logic (although not then considered part of mathematics) and 			including guide to how to solve equations using sophisticated matrix- based methods	
		190- 120 BCE 36	Hipparchus	Develop first detailed trigonometry tables Pre-classic Mayans	
410- 355 BCE		BCE		developed the concept of zero by at least this time	
		10-70 CE	Heron (or Hero) of	Heron's Formula for finding the area of a	
384- 322 BCE		Development and standardization of logic (although not then considered part of		Alexandria	triangle from its side lengths, Heron's Method for iteratively computing a square root
		mathematics) and	90-	Ptolemy	Develop even more

168 CE 200 CE 200 CE	Sun Tzu	detailed trigonometry tables First definitive statement of Chinese Remainder Theorem Refined and perfected decimal place value number system	CE 600-	Bhaskara I	zero (+, - and x), negative numbers, negative roots of quadratic equations, solution of quadratic equations with two unknowns First to write numbers
200- 284 CE	<u>Diophantus</u>	Diophantine Analysis of complex algebraic problems, to find rational solutions to equations with several unknowns	680 CE 780-	280- 280- 250 <u>Al-</u> 25 <u>Khwarizmi</u>	in Hindu-Arabic decimal system with a circle for zero, remarkably accurate approximation of the sine function Advocacy of the Hindu
220- 280 CE	Liu Hui	Solved linear equations using a matrices (similar to Gaussian elimination), leaving roots unevaluated, calculated value of π correct to five decimal places, early forms of integral and	850 CE		numerals 1 - 9 and 0 in Islamic world, foundations of modern algebra, including algebraic methods of "reduction" and "balancing", solution of polynomial equations up to second degree
400 CE		"Surya Siddhanta" contains roots of modern trigonometry, including first real use of	908- 946 CE	Ibrahim ibn Sinan	Continued Archimedes' investigations of areas and volumes, tangents to a circle
		sines, cosines, inverse sines, tangents and secants	953- 1029 CE	Muhammad Al-Karaji	First use of proof by mathematical induction, including to prove the binomial theorem
476- 550 CE	Aryabhata	Definitions of trigonometric functions, complete and accurate sine and versine tables, solutions to simultaneous quadratic equations, accurate approximation for π (and recognition that π	966- 1059 CE	Ibn al- Haytham (Alhazen)	Derived a formula for the sum of fourth powers using a readily generalizable method, "Alhazen's problem", established beginnings of link between algebra and geometry
598- 668	<u>Brahmagupta</u>	is an irrational number) Basic mathematical rules for dealing with	1048- 1131	Omar Khayyam	Generalized Indian methods for extracting square and cube roots to include fourth, fifth and

1114- 1185	higher roots, noted existence of different sorts of cubic equations 1114- 1185 Bhaskara II Established that dividing by zero yields infinity, found solutions to quadratic, cubic and quartic equations (including negative and	1350- 1425	<u>Madhava</u>	factorization and combinatorial methods Use of infinite series of fractions to give an exact formula for π , sine formula and other trigonometric functions, important step towards development of calculus	
1170	Leonardo of	irrational solutions) and to second order Diophantine equations, introduced some preliminary concepts of calculus	1323- 1382	Nicole Oresme	System of rectangular coordinates, such as for a time-speed-distance graph, first to use fractional exponents, also worked on infinite
1250	<u>Pisa</u> (Fibonacci)	numbers, advocacy of the use of the Hindu- Arabic numeral system in Europe, Fibonacci's identity (product of two sums of two squares is	1446- 1517	Luca Pacioli	Influential book on arithmetic, geometry and book-keeping, also introduced standard symbols for plus and minus
1201- 1274	Nasir al-Din al-Tusi	squares) Developed field of spherical trigonometry, formulated law of sines for plane triangles	1499- 1557	<u>Niccolò</u> <u>Fontana</u> <u>Tartaglia</u>	Formula for solving all types of cubic equations, involving first real use of complex numbers (combinations of real and imaginary
1202- 1261	Qin Jiushao	Solutions to quadratic, cubic and higher power equations using a method of repeated approximations Culmination of Chinese "magic" squares, circles and triangles, Yang Hui's Triangle (earlier version of Pascal's Triangle of	1501-	<u>Gerolamo</u>	numbers), Tartaglia's Triangle (earlier version of Pascal's Triangle) Published solution of
1238- 1298	Yang Hui		1576	<u>cardano</u>	cubic and quartic equations (by Tartaglia and Ferrari), acknowledged existence of imaginary numbers (based on √-1)
1267- 1319	Kamal al-Din al-Farisi	binomial co-efficients) Applied theory of conic sections to solve optical problems. explored	1522- 1565	<u>Lodovico</u> <u>Ferrari</u> John Naniar	Devised formula for solution of quartic equations
		amicable numbers,	1550-	Joini wapier	

1617		logarithms, popularized				notation for powers
		the use of the decimal point, Napier's Bones tool for lattice multiplication	162 166	3- 2	<u>Blaise Pascal</u>	Pioneer (with Fermat) of probability theory, Pascal's Triangle of binomial coefficients
1588- 1648	1588-MarinClearing house for1648Mersennemathematical thoughtduring 17th Century,Mersenne primes (primenumbers that are oneless than a power of 2)		164 172	1643- 1727	<u>Isaac Newton</u>	Development of infinitesimal calculus (differentiation and integration), laid ground work for almost all of classical mechanics
1591- 1661	Girard Desargues	Early development of projective geometry and "point at infinity",				generalized binomial theorem, infinite power series
1596- 1650	<u>René</u> <u>Descartes</u>	Development of Cartesian coordinates and analytic geometry (synthesis of geometry and algebra), also credited with the first use of superscripts for powers or exponents	164 171	6- 6	<u>Gottfried</u> <u>Leibniz</u>	Independently developed infinitesimal calculus (his calculus notation is still used), also practical calculating machine using binary system (forerunner of the computer), solved linear equations using a
1598- 1647	Bonaventura Cavalieri	"Method of indivisibles" paved way for the later development of infinitesimal calculus	165 170	4- 5	<u>Jacob</u> <u>Bernoulli</u>	matrix Helped to consolidate infinitesimal calculus, developed a technique
1601- 1665	<u>Pierre de</u> <u>Fermat</u>	Discovered many new numbers patterns and cheorems (including Little Theorem, Two- Square Thereom and Last Theorem), greatly extending knowlege of number theory, also				for solving separable differential equations, added a theory of permutations and combinations to probability theory, Bernoulli Numbers sequence, transcendental curves
1616- 1703	John Wallis	probability theory Contributed towards development of calculus, originated idea of number line, introduced symbol ∞ for infinity, developed standard	166 174	7- 8	<u>Johann</u> <u>Bernoulli</u>	Further developed infinitesimal calculus, including the "calculus of variation", functions for curve of fastest descent (brachistochrone) and

		catenary curve	1749-	Pierre-Simon	Celestial mechanics
1667- 1754	Abraham de Moivre	De Moivre's formula, development of analytic geometry, first statement of the formula for the normal distribution curve, probability theory	1827	Laplace	translated geometric study of classical mechanics to one based on calculus, Bayesian interpretation of probability, belief in scientific determinism
1690- 1764	Christian Goldbach	Goldbach Conjecture, Goldbach-Euler Theorem on perfect powers	1752- 1833	Adrien-Marie Legendre	Abstract algebra, mathematical analysis, least squares method for curve-fitting and linear
1707- 1783	<u>Leonhard</u> <u>Euler</u>	Made important contributions in almost all fields and found upeypected links			regression, quadratic reciprocity law, prime number theorem, elliptic functions
		between different fields, proved numerous theorems, pioneered new methods, standardized mathematical notation	1768- 1830	Joseph Fourier	Studied periodic functions and infinite sums in which the terms are trigonometric functions (Fourier series)
		and wrote many influential textbooks	1777- 1825	<u>Carl</u> <u>Friedrich</u>	Pattern in occurrence of prime numbers,
1728- 1777	Johann Lambert	Rigorous proof that π is irrational, introduced hyperbolic functions into trigonometry, made conjectures on non- Euclidean space and hyperbolic triangles		<u>Gauss</u>	construction of heptadecagon, Fundamental Theorem of Algebra, exposition of complex numbers, least squares approximation method, Gaussian
1736- 1813	Joseph Louis Lagrange	Comprehensive treatment of classical and celestial mechanics, calculus of variations, Lagrange's theorem of			function, Gaussian function, Gaussian error curve, non-Euclidean geometry, Gaussian curvature
1746-	Gaspard	finite groups, four- square theorem, mean value theorem	1789- 1857	Augustin- Louis Cauchy	Early pioneer of mathematical analysis, reformulated and proved theorems of
1818	Monge	geometry, orthographic projection			calculus in a rigorous manner, Cauchy's theorem (a fundamental

		theorem of group				and matrices
1790- 1868	August Ferdinand	theory) Möbius strip (a two- dimensional surface	1 1	.805- .865	William Hamilton	Theory of quaternions (first example of a non- commutative algebra)
	Möbius	with only one side), Möbius configuration, Möbius transformations, Möbius transform (number theory), Möbius function, Möbius inversion formula	1	.811- .832	<u>Évariste</u> <u>Galois</u>	Proved that there is no general algebraic method for solving polynomial equations of degree greater than four, laid groundwork for abstract algebra,
1791- 1858	George Peacock	Inventor of symbolic algebra (early attempt to place algebra on a strictly logical basis)	1	.815- 864	<u>George Boole</u>	Galois theory, group theory, ring theory, etc Devised Boolean algebra (using operators AND,
1791- 1871	Charles Babbage	Designed a "difference engine" that could automatically perform computations based on instructions stored on				OR and NOT), starting point of modern mathematical logic, led to the development of computer science
		cards or tape, forerunner of programmable computer.	1 1	.815- .897	Karl Weierstrass	Discovered a continuous function with no derivative, advancements in
1792- 1856	<u>Nikolai</u> Lobachevsky	Developed theory of hyperbolic geometry and curved spaces independendly of Bolyai				calculus of variations, reformulated calculus in a more rigorous fashion, pioneer in development
1802- 1829	Niels Henrik Abel	Proved impossibility of solving quintic equations, group theory, abelian groups, abelian categories, abelian variety	1 1	.821- .895	Arthur Cayley	of mathematical analysis Pioneer of modern group theory, matrix algebra, theory of higher singularities, theory of invariants, higher
1802- 1860	<u>János Bolyai</u>	Explored hyperbolic geometry and curved spaces independently of Lobachevsky				dimensional geometry, extended Hamilton's quaternions to create octonions
1804- 1851	Carl Jacobi	Important contributions to analysis, theory of periodic and elliptic functions, determinants	1 1	.826- .866	<u>Bernhard</u> <u>Riemann</u>	Non-Euclidean elliptic geometry, Riemann surfaces, Riemannian geometry (differential geometry in multiple

		dimensions), complex manifold theory, zeta function, Riemann Hypothesis	1854-	Henri	symmetry groups, work on group theory and function theory Partial solution to "three
1831- 1916	Richard Dedekind	Defined some important concepts of set theory such as similar sets and infinite sets, proposed Dedekind cut (now a standard definition of	1912	<u>Poincaré</u>	body problem", foundations of modern chaos theory, extended theory of mathematical topology, Poincaré conjecture
1834- 1923 1842-	John Venn Marius	the real numbers) Introduced Venn diagrams into set theory (now a ubiquitous tool in probability, logic and statistics) Applied algebra to	1858- 1932	Giuseppe Peano	Peano axioms for natural numbers, developer of mathematical logic and set theory notation, contributed to modern method of mathematical
1899	Sophus Lie	geometric theory of differential equations, continuous symmetry, Lie groups of transformations	1861- 1947	<u>Alfred North</u> <u>Whitehead</u>	Co-wrote "Principia Mathematica" (attempt to ground mathematics on logic)
1845- 1918	<u>Georg Cantor</u>	Creator of set theory, rigorous treatment of the notion of infinity and transfinite numbers, Cantor's theorem (which implies the existence of an "infinity of infinities")	1862- 1943	<u>David Hilbert</u>	23 "Hilbert problems", finiteness theorem, "Entscheidungsproblem" (decision problem), Hilbert space, developed modern axiomatic approach to
1848- 1925	Gottlob Frege	One of the founders of modern logic, first rigorous treatment of the ideas of functions and variables in logic, major contributor to study of the foundations	1864- 1909	Hermann Minkowski	mathematics, formalism Geometry of numbers (geometrical method in multi-dimensional space for solving number theory problems), Minkowski space-time
1849- 1925	Felix Klein	of mathematics Klein bottle (a one-sided closed surface in four- dimensional space), Erlangen Program to	1872- 1970	<u>Bertrand</u> <u>Russell</u>	Russell's paradox, co- wrote "Principia Mathematica" (attempt to ground mathematics on logic), theory of types
		classify geometries by their underlying	1877-	<u>G.H. Hardy</u>	Progress toward solving

1947 1878- 1929	Pierre Fatou	Riemann hypothesis (proved infinitely many zeroes on the critical line), encouraged new tradition of pure mathematics in Britain, taxicab numbers Pioneer in field of complex analytic dynamics, investigated iterative and recursive processes	1906- 1998	<u>André Weil</u>	numbering, logic and set theory Theorems allowed connections between algebraic geometry and number theory, Weil conjectures (partial proof of Riemann hypothesis for local zeta functions), founding member of influential Bourbaki group
1881- 1966	L.E.J. Brouwer	Proved several theorems marking breakthroughs in topology (including fixed point theorem and topological invariance of dimension)	1912- 1954	<u>Alan Turing</u>	Breaking of the German enigma code, Turing machine (logical forerunner of computer), Turing test of artificial intelligence Set and solved many
1887- 1920	<u>Srinivasa</u> <u>Ramanujan</u>	Proved over 3,000 theorems, identities and equations, including on highly composite numbers, partition function and its asymptotics, and mock	1913-	r aur Eruos	problems in combinatorics, graph theory, number theory, classical analysis, approximation theory, set theory and probability theory
1893- 1978	Gaston Julia	theta functions Developed complex dynamics, Julia set formula	1917- 2008	Edward Lorenz	Pioneer in modern chaos theory, Lorenz attractor, fractals, Lorenz oscillator, coined term
1903- 1957	John von Neumann	Pioneer of game theory, design model for modern computer architecture, work in quantum and nuclear	1919- 1985	<u>Julia</u> <u>Robinson</u>	"butterfly effect" Work on decision problems and Hilbert's tenth problem, Robinson hypothesis
1906- 1978	<u>Kurt Gödel</u>	physics Incompleteness theorems (there can be solutions to	1924- 2010	Benoît Mandelbrot	Mandelbrot set fractal, computer plottings of Mandelbrot and Julia sets
		mathematical problems which are true but which can never be proved), Gödel	1928- 2014	Alexander Grothendieck	Mathematical structuralist, revolutionary advances

		in algebraic geometry, theory of schemes, contributions to algebraic topology, number theory, category theory, etc
1928- 2015	John Nash	Work in game theory, differential geometry and partial differential equations, provided insight into complex systems in daily life such as economics, computing and military
1934- 2007	<u>Paul Cohen</u>	Proved that continuum hypothesis could be both true and not true (i.e. independent from Zermelo-Fraenkel set theory)
1937-	John Horton Conway	Important contributions to game theory, group theory, number theory, geometry and (especially) recreational mathematics, notably with the invention of the cellular automaton called the "Game of Life"
1947-	<u>Yuri</u> Matiyasevich	Final proof that Hilbert's tenth problem is impossible (there is no general method for determining whether Diophantine equations

		have a solution)
1953-	Andrew Wiles	Finally proved Fermat's Last Theorem for all numbers (by proving the Taniyama-Shimura conjecture for semistable elliptic curves)
1966-	Grigori Perelman	Finally proved Poincaré Conjecture (by proving Thurston's geometrization conjecture), contributions to Riemannian geometry and geometric topology

Life stands before me like an eternal spring with new and brilliant clothes. Curl Friedrich Ganss

MATHEMEMATICS IN LIFE

Success is the problem – but Failure is the formula We can't solve the problem Without knowing the formula.

I am an 8 letter word. First 4 is your identity. Last 4 may be average, good or

excellent but the last 2 are ok. 2,3,4 can't be beaten.

Ans:

First 4 is your identity = Face Last 4 may average, good or excellent $\}$ = Book Last 2 words = ok 2,3,4 can't be be beaten = ace Therefore, the answer is FACEBOOK.

WHAT COMES AFTER A MILLION?

Billion, Trillion, Quadrillion, Quintillion, Sextillion, Septillion, Octillion, Nonillion, Decillion and Undecillion.

BEAUSY OF MASHEMASSES

98765432	\times 9 + 0 = 888888888888888888888888888888888
9876543	\times 9 + 1 = 88888888
987654	\times 9 + 2 = 8888888
98765	\times 9 + 3 = 888888
9876	$\times 9 + 4 = 88888$
987	$\times 9 + 5 = 8888$
98	$\times 9 + 6 = 888$
9	$\times 9 + 7 = 88$

<u>МАГН ЈОКЕ</u>

After explaining to a student through various lessons and examples that:

$$\lim_{x \to 8} \frac{1}{x-8} = \infty$$

I tried to check if she really understood that, so I gave her a different example. This was the result:

$$\lim_{x \to 5} \frac{1}{x-5} = \infty$$

MATHEMATICS QUOTES
